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The spreading of a twisted stream flowing through a round orifice into an infinite space 

flooded by the same fluid at rest is of interest in many technical problems, 

The formulation of this problem and its first solution are due to Loitsianskii [ 11. who 
had derived an asymptotic solution for the boundary layer of a lightly twisted stream, 
valid at a great distance from the orifice, He had found the two first terms of the expan- 

sion which, however, does not permit to analyze the effect of the twist velocity on the 

stream axial velocity, nor to determine the area where the reverse stream originates. 
In this paper the third and fourth terms of the asymptotic expansion are derived in 

their final form. This makes possible the analysis of streams with more pronounced 

twist, as well as the effect of twisting on the axial velocity profile. 

1, Fundrmsntrl equatfonsI In the case of axial symmetry the equations of 
a viscous incompressible fluid boundary layer of a twisted stream have, in a cylindrical 
coordinate system, the following form : 

Here, U, Us W are respectively the axial, radial and transversal components of the 
velocity vector, x is the axial distance from the stream source, and F is the distance 

from the stream axis. 
Applying the theorem of change of momentum and of the moment of momentums we 

(1.2) 

Here K. and _&, are constants which characterize the initial impulse and the kinetic 
moment of ihe stream. 

2. Asymptotic allprarion of vslocftfsr and prasturs. From the 
last Eq, of (1.1) it follows that the axial and radial components of the velocity vector 

may be expressed by one function +(x. F) , if we assume 

We introduce new independent variables 

304 
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E = 2, I-p-L 
x JJv (2.2) 

Following Loitsianskii’s method we shall seek function $(X, F) in the-form of expan- 

sion l/I=v(czL+ao+~+-$+...) (2.3) 

Here, a.CLo,&.... are the unknown functions q. From (2.1) we derive the expres- 

sions for velocity components 11 and V 

~++~&+!$+~~+... (2.41 

uzI/~$_~ 
X [ 

5+ do ’ ; + (a,! + T) f + (a; + 2$) l f -+- * ’ .I 
\ 

Here, as in the following. a prime denotes differentiation with respect to rl , The nota- 
tion X will be retained for 5. The stream twist velocity W, and the pressure will be 

expressed in the form of series (2.5) 
t(;= $+$+$+$+ . . . . $L+$+$+LJ+... 

where b1.b~ ,..., Cl .c?z ,... represent the unknown functions of “‘1. Substituting 
expansions (2.4) and (2.5) into the first three Eqs. of (1.1) and equating the coefficients 
of terms of equal powers of X, we obtain for determination of the unknown fiUKdOIU 

ii, a,, a,,...; b,, b, ,...; Cl, c* (... a system of ordinary differential equations, as fol- 

lows Cl + qc,’ = 0 (2.6) 

(2.10) 
qc1’ = 0, vcz’ = b12, qc3’ = 2blb,, qc: = b,’ + 2blbs 

7~ = 2bA + 2bzb3 (2.11) 
bI” + !$ bI’ -k$b, =O, b2“+- Tbs’ -+;ybl= 0 (2.32) 

b/+ l$“b,‘_l----z~rs’b, ; aO’b2 
‘1 TX 

@_* =O 

rl ‘1 ‘7” 
(2.13) 

Because at the stream axis the velocity component V = 0 when ?J = 0, and U(X. 0) 

must have a finite value, we have from (2.4) 

a=o,,=er=...=O .for y=o, a’=~t,‘=a~‘=...=O for 7-0 (2.14) 

With increasing distance from the stream axis. U and U must tend to zero, therefore 
it follows from (2.4) that d (oo), a, (oc), a, (oo),are bounded. 

For the velocity of twist W we have the following obvious boundary conditions 

b, (0) = b, (0) = . ..=O. b, (60.) = b, (oo) = . . . = 0 (2.15) 
We assume that in Formula (2.6) 
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Cl (cc) = C? (x) = 1.. = 0 (2.16) 
Substituting expansions (2.4) and (2. 5) into integrals of (1. Z), and equating coefficients 

of terms with equal powers of X , we obtain a system of integral conditions 

(2.17) 

cc co 

c 11 (E’b, $ u/b,) dy = --k.-- , I-/ iii'b, + ao’ba $- al’b,) dq = 0 
i, 2w 6 s 

0 

3, Sotutfon of the problem of a lightly twirtrd rtrarm, Third 
approximation. It may be assumed, when considering an area far away from the 

nozzle end, that the axial velocity component there is U > 0. 

Because for large va/ues of variable x the sign of U is determined by the first term 

of expansion (2.4), d must be positive, hence by virtue of the fifth of the integral con- 

ditions (2,17), it follows that bl E 0, as it is a constant sign parameter. With this, the 

first of Eqs. (2.16) is satisfied identically. The first of Eqs, (2.11) together with Eq. 

(2.2) yield ~1 = 0. The second and third of Eqs c (2.11) with their respective boundary 

conditions (2.16) yield C2 = Ca = 0. 
This simplifies considerably Eqs.(2. 8) and (2. 9), which can now be integrated in their 

final form, as well as the homogeneous linear Eqs. (2.12). 

The following expressions were derived by Loitsianskii 1.11 : 

Here a, /3, y are constants of integration. With the aid of the second and sixth of 

Eqs, (2.17) constants Ct and ‘y may be expressed in terms of the stream impulse Ko and 

of moment of momentum Lo . 

(3.3) 

We proceed now with the integration of Eq. (2.9) which defines the third term of 

expansion (2.4) of the velocity components U and U, 
Substituting into (2.9) the values of variables 6( ‘iJ) , f&,(q) and 04(q) from Eqs, 

(3.1) and (3.2), we obtain for (21 a nonhomogeneous linear equation of the third order 

( ) 
$"+ 

1 + Qu2q2 al' ' 

( ) 

, 8a2 

tl(1. + I/4 a%? 7 
ar + 

T (1 + ‘Id a*q2)2 5 

2aQ y% 

+ (1 +- l/d a4q8)3 
8 - a2+’ 

‘l = -T (1 + I/a zr*tp)4 - 
a*p2 (1 - s/d ua q2)2 

(1 + l/P arqr)s 

with boundary conditions (2.14) and (2.16) 

=1 (0) = a; (0) = 0, %(4<M 

(3.4) 

(3.5) 
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with boundary conditions (2.15) 

b, (0) = b, (-2) = 0 

If in Eqs. (3.4) and (3.6) we take 

g= 
l/& &J:: 

1 ~;.. li4 aZq2 

as the new independent variable, we obtain after transformation 

5 (1 - $$ + (I- F;, (1 - 4Q 2 -j- 6 (1 - E) 3 + 4a1 

= 8 & (2 - 3Q - P2 (1 - E) (1 - 4E)* 

a1 (0) = 0, al’ (0) < Jf , N)<M 

E2 (1 -- Q” $ + E (I - 5; d$ - t + - 55 + 45’) b3 zz 

= PrE 1/E(l - 4%) (1 - Q4’t 

b(0) =bs(l) = 0 
It will be easily seen that 

a1 (%) = ga (5E - 7g?) + q (E; - 5p + 4Ly) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

is the partial integral of the nonhomogeneous Eq. (3.8) satisfying boundary conditions 

(3.9) . 
Solution (3.11) is the unique solution of Eq. (3.8). as the corresponding homogeneous 

has no solution which would satisfy boundary conditions (3.9). 

In fact, the substitution of 

reduces it to the second order equation 

E (E - 1) (E + 2)Z” + 2 (E” + 3E - 1)Z’ - 4 (E + 3) 2 = 0 (3.12) 
The integral of Eq. (3.12), bounded when 5 = 0, may be represented by the hypergeo- 

metric functioil 

2@=2F( 
1+JT7 I---)/1’7 

2 , 2 3 “E)+EF’(Yy ,y AE) (3.13) 

In the neighborhood of point 5 = 1, integral (3.13) is unbounded. 

We may note that an attempt was made by Dubov in paper p] to compute terms of 
the third approximation by integrating Eqs. (3.8) and (3.10) by means of expansion into 
infinite series. There the integral of the corresponding homogeneous equation, multiplied 
by an arbitrary constant, was erroneously added to the partial integral of Eq, (3.8). How- 
eper, this integral will be unbounded in the neighborhood of point 5 = 1, and must be 

discarded, The solution of Eq. (3.10) given iri paper [33 contains an arbftrary constant, 
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because boundary condition (3.15) is not satisfied. 

The solution of Eq. (3.10) which satisfies the stipulated boundary conditions is 

(3.15) 

For the determination of the arbitrary constant 6 appearing in solution (3.14) we shall 

stipulate the fulfilment of the last of integral conditions (2.17). 

A change to variable 5 , as defined by (3. 7), brings this integral condition to the fol- 
lowing form 

With parameters Cz: (q), a, (q), b, (IJ) expressed in terms of the new variable 5 , we 
obtain from (3.1) and 13.2) 

a = 45, a0 = BE (@ - 11, b, = 2y -1/E@ - ,$)“I* 

Substituting these expressions and the expression of b3( 5) from (3.14) into integral 

condition (3.15), we obtain 

.* 

i Jf [4PT 5 (1 -- E) (- 25” + 7/2 5 -- %) + 
I) 

The first integral is equal zero, Computation of the second integral yields 

$ cos - JlJq_-o 
2 for 8 = 0 

Reverting to variable ?‘J. we derive the final Formulas for the third approximation 

a1 (rl) _ P’ w (1 - */4uzq9 T2 (lo-u”qy q2 
16 (1 + l/r cPq’)S 

I 

24cQ (1 + ‘/, dqa)z 
(3.16) 

(3.17) 

From Eqs. (2.11) we have 

Taking into account conditions (2.16) and integrating, we obtain 

(3.18) 

4. Computrtion of term* of the fourth approximation. We shall 
now skve Eq. (2.10). By substituting into it the obtained values of variables CJ 1, Cs , a0 
and changing over to variable 5 defined by Formula (3.7). we derive the r$ihomogene- 
ous linear equation of the third order which defines function a, 
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= ~/8~~(192~4-416~3+288&-69E+5)+ 

+‘/a~~2a-“(-196~3+252~2-33~-15) 
with boundary conditions 

a2 $0 = 0, @41 (0) < M* % (3) < LJQ 
A sal~tion of E& (4.1) which satisfies conditions (4.2) is 

a2 = %B” M! - SP + l’lsLz i- Y& -t (1 - 8 In (1 - 5)l - (4.3) 

- 1112By2a-4 . (28&45i2 -+- l5E) + 6 1135 - !10ij,2 -j- 12 (1 - t) In (1 - E)I 

Here, 6 is an arbitrary constant Using Eq. (2.4) we obtain the’ expression of the axial 

component of the velocity vector in terms of variable li; in the fourth approximation 

(4.4) 
a I& E) = ‘/aa 0 - g?)ra’ (Qf’ + a,’ (E)r-2 + a,’ (5) rs + a,’ ({)r”l 

Here 

a’ (E) = 4.t %‘(E) = B (45 - 1) 

a,’ (E) = ‘/4B” (1 - log + 12gy + ~/9y2a-4(5-i4~) 

%’ (5) = l/a B” H6p - 24E2 + 22/a t - “II2 - In (i - E)l - 
--1/d /3y*c? (28p - 3OE + 5) -+ 6 I-2Of; + 1 - In (1 - Ql 

With 5 = 0 we obtain from this the axial velocity distribution on the stream axis 

The reverse flow, which is the result of the stream twist vanishes ar point X, where 

U&V,) = 0 l 
For the determination of this point we obtain from (4.5) a third power equation with 

respect to xo 
4203-?~oe+j%+~*)ZO-(~pa-(S+5~)=0 (4.Q 

Under conditions of no-twiit of the stream the area of reverse fIow must be absent I) 

Hence, with y 4 0, Eq. (4.6) must have a root X0 = 0 e We then have 6 = s/oe@, and 

Eq, (4.7) has one positive real root. The asymptotic expansion presented in this paper 
is not valid in the case of x <.Q , as then 24 < 0 l In this case we have a zone of reverse 
flows to which the boundary layer theory is not applicable. It follows from Eq, (4.7) 

that x0 is expressed by 
%=&(&jr P-&$ 

Here, M, is the initial mass flow per second 125 In this way two twisted streams 
having rhe same ratio yz/a4”f12 will be similar. Expressing CL, @, y in terms of initial 
impulses and of the kinetic moment in accordance with Formulas (3.31, we obtain the 
following criterion for the similarity of twisted streams 
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Numerous investigations have shown that majority of real fluids cannot be described in 
terms of a constant viscosity (Newtonian) model, There exist various effects connected 

with elastic properties of these fluids, with the dependence of parameters on shear velo- 
city etc. 

It is these phenomena, inherently related to the nonnewtonian behavior of melts and 

solutions of polymers, that cause irregularities in their flow patterns and give rise to so 

called “elastic turbulence” [l ta 31, 

All the flow irregularities exhibit a common characteristic feature, namely they appear 

at very small Reynolds numbers (they are very high viscosity fluids), when the usual hydro- 
dynamic instability and turbulence cannot take place. 

Assumption of the “elastic” character of this phenomenon is well supported by experi- 

mental data available, and several authors f4 to 61 use the critical value of a dimension- 

less parameter l? = 81/L-1 = +-W’i, characterizing reversible elastic deformation af 

fluid. as the criterion of its appearance. Here ?-i is the viscosity, G is the shear modulus, 
8 = 7 (=_I is the time of relaxation while I/ and L are characteristic velocity and linear 

dimension, respectively. 
When the accumulated elastic deformation exceeds some critical value (of the order 

of 7). then the phenomenon described above takes place, and we can use this as a basis 
for another assumption. Just as the inertial forces in a viscous fluid, the elastic fWXs 
act, in vlscoelastic fluids as an additional destabilizing factor (the connection between 

the elastic terms and additional nonllneari~ in equations will be seen later on the model 
used). This in turn, leads to tionslderarion of the possibilty of a special “elastic” 
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